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ABSTRACT 
Emerging uses of imaging technology for consumers cover a 
wide range of application areas from health to interaction 
techniques; however, typical cameras primarily transduce 
light from the visible spectrum into only three overlapping 
components of the spectrum: red, blue, and green. In 
contrast, hyperspectral imaging breaks down the 
electromagnetic spectrum into more narrow components and 
expands coverage beyond the visible spectrum. While 
hyperspectral imaging has proven useful as an industrial 
technology, its use as a sensing approach has been 
fragmented and largely neglected by the UbiComp 
community. We explore an approach to make hyperspectral 
imaging easier and bring it closer to the end-users. 
HyperCam provides a low-cost implementation of a 
multispectral camera and a software approach that 
automatically analyzes the scene and provides a user with an 
optimal set of images that try to capture the salient 
information of the scene. We present a number of use-cases 
that demonstrate HyperCam’s usefulness and effectiveness.  

Author Keywords 
Multispectral imaging; computer vision; sensing 

ACM Classification Keywords 
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Miscellaneous.  

INTRODUCTION 
Consumer-electronics devices are increasingly integrating 
different imaging sensors. As a result, cameras have become 
the go-to sensor in the research community, with many 
applications, e.g., health sensing [9,34], gesture recognition 
[26], augmented reality [1], etc. Despite the versatility of 
typical RGB cameras, they are still not always suitable for 

certain applications; cameras are impacted by lighting, 
resolution, occlusion, etc. Consequently, the last decade has 
seen researchers looking to augment RGB cameras with 
non-visible imaging modes such as depth and thermal 
imaging. However, there is still information in the visual 
spectrum that is underutilized.  

The human eye and RGB cameras divide visible light into 
three bands of color (although with slightly different spectral 
responses). When two materials look similar to the human 
eye, it only means that they share similar spectral properties 
when analyzed by the human trichromatic color vision 
system. They can still have very different spectral properties 
in some other part of the spectrum. Consequently, 
information in other bands spread throughout and beyond 
the visible spectrum remains indistinguishable to the human 
eye and RGB cameras. Hyperspectral imaging provides 
more dimensions that could enhance the utility of cameras as 
a general-purpose sensor. In fact, hyperspectral imaging is 
already being used in the food and agriculture industries 
[3,23,24], astronomy [16], and surveillance [33] because of 
its ability to expose features of an object difficult or 
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Figure 1. (Left) HyperCam Hardware. (Top-Right) RGB 
image of a user’s hand. (Bottom-Right) The user’s veins and 
skin texture are emphasized in the HyperCam-generated 
image. 





impossible to detect with the human eye. One of the most 
common uses of hyperspectral imaging is in geological 
mapping [16]. Although hyperspectral imaging can “expose 
secrets of the universe” [5], detect hidden diseases [21], 
predict ripeness and probably even sweetness of fruits 
[3,23,24], the use of hyperspectral imaging has been highly 
fragmented. Furthermore, there has been very little 
exploration of hyperspectral imaging in the UbiComp 
community as a sensing technique.  

In this paper, we present HyperCam, an approach that makes 
hyperspectral imaging easier to explore and implement. 
Specifically, we demonstrate a low-cost hardware 
implementation of a hyperspectral camera using time-
multiplexed illumination and a software system that makes it 
substantially easier for the user to find the salient pieces of 
information for a particular scene. Since multispectral 
imaging inherently provides an expanded view of the 
spectrum, it can lead to an arbitrarily high number of 
spectral images for each scene. Digesting this much 
information becomes difficult and impedes the process of 
analyzing a scene. In such a situation, the user can benefit 
from HyperCam, as it automatically highlights salient 
aspects of a scene to provide a starting point for further 
exploration.  

HyperCam first captures the relationships between different 
wavelengths of light by using a set of transformation 
techniques, including PCA and normalized linear 
combinations of the collected sequence of spectral images. 
The system then automatically analyzes this new set of 
images to determine what results would be “interesting” to 
the user. We define “interesting” images as ones that show 
information not visible in RGB alone.  The system 
automatically adapts to each scene and requires minimal 
input from the user. Depending on whether the user is 
looking for spatial or temporal changes in a scene, 
HyperCam modifies its output accordingly. In the end, 
HyperCam provides the user with an optimal set of images 
that try to best capture the variability in the scene. For 
example, when a user places his or her hand in front of the 
camera, the system produces an image like 
Figure 1 (Bottom-Right). This image accentuates the user’s 
skin texture and vein patterns, which are not seen as 
prominently in the RGB image. 

We demonstrate the utility of HyperCam on a few example 
applications: helping a user estimate the ripeness of certain 
foods and an interaction system that identifies users of a 
multi-user interface by analyzing the texture and venous 
structure of their hands. Finally, we discuss some challenges 
and limitations of our approach and multispectral imaging in 
general. 

The specific contributions of this paper are: 

1. A low-cost hardware implementation of hyperspectral 
imaging. 

2. A software approach that makes it easy to find hidden 
aspects of different scenes. 

3. A demonstration of our hardware and software through a 
couple of applications in different domains; and an 
overview of the opportunities and challenges of 
multispectral imaging for ubiquitous computing. 

HYPERSPECTRAL IMAGING 
The human visual system senses the electromagnetic 
spectrum from approximately 400 to 700 nm (Figure 2) with 
sensitivity in three partially overlapping bands that make up 
the colors we know as red, green, and blue (RGB).  
Conventional cameras have a similar response to the human 
visual system by design, as they are typically used to capture 
images for human presentation and consumption.  

Due to the fairly broad absorption spectrum of the color 
response of the human eye and common RGB camera filters, 
many details are lost in narrow parts of the electromagnetic 
spectrum.  These details, however, can be quite meaningful. 
Subtle differences in spectra can indicate important details in 
material properties. This is a property that is exploited both 
in nature (e.g. the honeybee’s use of UV vision) and 
scientific applications.  The term “hyperspectral imaging” 
broadly refers to any sensing system that utilizes more than 
the standard RGB bands of sensitivity. It is often used 
interchangeably with “multispectral imaging”. 

 
Figure 2. Light spectrum. HyperCam operates in the visible 
and NIR bands. Note: The axis scale is not consistent. 

Capturing Hyperspectral Images 
Capturing hyperspectral images entails sampling the 
electromagnetic spectrum more finely than common RGB 
filters. Typically, a “hyperspectral camera” has at least 4 
bands.  

There are many ways to sample the electromagnetic 
spectrum with a camera.  The most common approach for an 
RGB camera is to spatially multiplex the sensing elements 
by placing a set of interspersed red, green, and blue filters 
over the pixels of a grayscale sensor. This arrangement of 
filters is called a color filter array (CFA), the Bayer Pattern 
being the most common. Cameras then interpolate the values 
at each filter to generate the final image. A common 
approach to capturing a few extra bands is to extend the 
CFA with more filters, such as different shades of RGB [38] 
or filters for non-visible bands like ultraviolet (UV) or near-
infrared (NIR) [39]. For example, FluxData and TetraCam 
make such multi-spectral cameras with three to seven 
custom filters. These cameras usually range from $5,000 to 
$40,000 USD.  



Often in hyperspectral imaging, one wants a much wider and 
finer sampling of the electromagnetic spectrum.  This is 
difficult to achieve with CFAs, as it is hard to make narrow 
bandwidth color gels. The most common ways to acquire 
many dense spectral samples are to use diffraction gratings, 
prisms, time-sequenced narrowband filters, or time-
sequenced illumination. 

The first two approaches are the most basic and use a 
different form of spatial multiplexing than CFAs. A 
diffraction grating or prism will split an incoming ray of 
light such that the spectral components are physically 
separated in one dimension. To use this approach in a 
camera, the grating or prism is placed such that one 
dimension of the sensor samples one spatial dimension while 
the orthogonal dimension captures the spectral information 
[40]. This type of camera is called a line-scan camera, as it 
can only image one line at a time. To capture an image, one 
would sweep such a camera across the scene to get a 2D 
image. 

While line-scan cameras have their uses and benefits, such 
as very dense spectral sampling, they are not ideal for 
applications that need to acquire 2D images rapidly and 
accurately.  The most common approach for capturing 2D 
images is to time-multiplex the spectral sensing.  This can be 
done in two ways, passively and actively. 

The passive approach is to capture images through a set of 
narrow filters that are changed over time.  This is typically 
done by spinning a wheel using a servomotor [7]. The active 
approach is to use multiple narrowband illumination sources 
and switch between them as required [22].  

There are various trade-offs between the two approaches. 
The precision and speed with filter-wheels and servomotors 
in passive approaches can be limited by the RPM and the 
precision of the motor. Such systems are also harder to 
miniaturize.  However, the biggest concern that is often 
overlooked is that the spectral response of narrowband filters 
varies with the angle of incidence of light, which is not 
constant in typical camera systems unless specifically 
designed with special optics [13].  In contrast, the active 
approach is limited by the intensity of the ambient 
illumination and the power needed to overcome it. It is also 
challenging to create very narrowband illumination, thus 
reducing spectral precision. In addition, using different light 
sources requires careful alignment to ensure even 
illumination and prevent inconsistent shadows and 
highlights.  

Recently, Apple® has started using two time-multiplexed 
light sources, a white LED and a “skin-tone” LED, on their 
smartphones to accurately reproduce skin colors in low-light 
conditions. It serves as a demonstration of how multiple 
light sources can be aligned properly in a consumer product 
and ensure consistent scene reproduction. 

There has been recent interest in multi-spectral imaging on 
mobile devices. Eigen Imaging Inc.1 modifies off-the-shelf 
mobile devices to remove the camera’s infrared (IR) filter. 
The company provides different narrowband filters that the 
user can put in front of their cameras to explore the UV or 
IR aspects of a scene. 

RELATED WORK 

Applications of Hyperspectral Imaging 
Hyperspectral imaging has largely been used for remote 
sensing, surveillance, and industrial applications, where the 
spectral signatures are used to differentiate between 
materials. Remote sensing is one the most popular uses of 
hyperspectral imaging. GLIMS uses satellite imagery to 
analyze glaciers’ extent and changes [16]. Researchers have 
also used hyperspectral data from satellites to predict 
landslides [33]. They monitor vegetation and land cover 
from hyperspectral images and then make models to robustly 
predict the landslide susceptibility of an area. In areas where 
the vegetation covers less than 40% of the area, soils and 
rocks make it hard for traditional imaging techniques to 
accurately predict vegetation cover [31]. Hyperspectral 
imaging helps in such situations because green vegetation 
has a distinct reflectance spectrum in the visible as well as 
the near-infrared (NIR) region.  

Another very popular area for the use of hyperspectral 
imaging is non-invasive analysis of works of art [2]. It can 
be used to infer the painting techniques of different artists 
and detect forgeries. Relatively recently, NIR imaging and 
spectroscopy has also gained popularity for applications in 
physiological sensing. For example, biomedical researchers 
are working on imaging approaches to accurately measure 
blood glucose levels [10,18].  

Infrared-Imaging-based HCI and UbiComp Systems 
A number of camera-based gesture detection systems have 
used NIR to illuminate the scene for effective detection and 
segmentation of a user’s hands. The reason such systems use 
IR light is because IR is invisible to the user and does not 
hamper the experience. Such a technique is common for rear 
projected vision systems such as HoloWall [25], 
PlayAnywhere [36], and Digits [17]. Numerous HCI projects 
around novel user interfaces have used skin’s higher 
reflectance to segment a user’s hands from rest of the scene 
[30]. While it has proved to be very useful, there are many 
objects around us that have high reflectance in the NIR 
region. One of the advantages of hyperspectral imaging is 
better image segmentation. A hyperspectral imaging system 
generates more than three data points for each pixel. It 
generates a spectral power distribution for each pixel of the 
scene. Therefore, the system has more data and potentially 
higher probability of finding differences between different 
objects in a scene. One way the confusion between hands 
and other objects can be avoided is by leveraging the fact 
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that almost all human skin has a reflectance dip around 
970 nm [14]. This information can improve the performance 
of hand segmentation systems significantly. This is just one 
example of the kind of advantages a hyperspectral imaging 
system can provide to ubiquitous computing and human-
computer interaction systems.  

Apart from using NIR, many interactive systems have used 
the far-infrared (FIR) spectra as well, a technique known as 
thermal imaging. HeatWave [20] used thermal and depth 
imaging to enable gestures on arbitrary surfaces. It also 
enabled hover and pressure-based gestures. Shirazi et al. 
[30] have explored the thermal reflectivity of different 
surfaces for interaction with arbitrary projected surfaces. 
Researchers have also used thermal imaging for 
illumination-invariant facial recognition [19]. More recently, 
thermal imaging has also been used in the UbiComp 
community for disaggregating energy usage [11].  

HARDWARE DESIGN 
For most multispectral imaging applications, it is desirable 
to have a high spatial resolution hyperspectral camera that 
can take 2D images. There are surprisingly few off-the-shelf 
hyperspectral cameras; the ones that exist are quite 
expensive (upwards of $5,000 USD) and usually do not have 
a high spatial resolution. Thus, we decided to build our own 
high resolution, time-multiplexed multispectral imaging 
system. 

HyperCam (Figure 1) is a general-purpose hyperspectral 
imaging system for visible and NIR wavelengths. We chose 
to use the PointGrey Flea3 FL3-U3-13Y3M CMOS camera. 
It is sensitive from 350 nm to 1080 nm, with peak quantum 
efficiency at 560 nm. This camera has a frame-rate of 
150 FPS and a maximum resolution of 1280×1024. 
Considering we time-multiplex the spectral bands, we can 
capture between 9-150 FPS, depending on the number of 
wavelengths used. HyperCam currently has 17 different 
bands of spectrum, so if an application needs all 17 bands, 
then the effective frame-rate for the camera is 150÷17 ≈ 9 
frames per second. 

 
Figure 3. Power spectral distribution for the LEDs on 
HyperCam. The color of the curve corresponds to the color of 
the wavelength. Black color denotes the infrared 
wavelengths. 

We use 17 different spectral bands that are created using 
narrow band LEDs. The wavelengths for these LEDs vary 
from 450 to 990 nm. These are off-the-shelf LEDs, 

empirically selected to cover the camera’s sensitivity range. 
Figure 3 shows the power spectral distribution for the 
selected LEDs. Ideally, each response would be narrow in 
order to capture the reflectance of only a single band of 
color. However, there is a tradeoff between LED response 
width, sampling density, and light efficiency. Additionally, 

the LEDs should have the same intensities, but we were 
limited by what is available off-the-shelf for both properties. 
Thus, there is a need to calibrate the intensities of all the 
LEDs. We will discuss the calibration process in the next 
section. The LEDs are arranged in a circle (Ø = 5 cm) 
around the camera lens (Figure 4, Left).  

Given our ring arrangement, each LED has a different 
lighting direction and path.  This causes non-uniform glares 
and shadows for different wavelengths. We compensate for 
this by using an integrating hemisphere to diffuse the light 
and minimize directional non-uniformity (Figure 4, Right). 
The light from an LED strikes the integrating hemisphere 
and then reflects out of the light box through an opening at 
the center. The integrating hemisphere causes a large 
number of reflections inside the light box, which is what 
diffuses the light, but there is some light absorbed at each 
reflection. Although this leads to reduced light intensity, we 
found that the final light intensities were satisfactory for 
most applications.  

The PointGrey Flea3 camera has a GPIO interface for 
power, triggering, serial I/O, pulse width modulation, and 
strobing. We control the camera through the GPIO interface 
using a PSoC3: CY8C38 chipset. We program state-
machines in the on-board EEPROM to enable fast switching 
between LEDs. All image processing was performed on a 
computer that was connected to the PSoC and camera over 
separate USB connections. The camera sent the frames 
directly to the computer over its dedicated USB 3.0 
connection. 

Calibration 
HyperCam requires two calibration steps. The first step 
ensures that the setup has a flat spectral response. We 
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Figure 4. (Left) 17 LEDs of different wavelengths form 
HyperCam’s spectra. (Right) The LEDs shine inside the 
integrating sphere (white enclosure) and the light comes out 
of the opening in the center. 



calibrated the intensities of all the LEDs by looking at the 
spectral reflectance response of the camera for a MacBeth 
color chart at each wavelength. Ideally, this is a one-time 
calibration, but LEDs can slowly become dimmer over their 
lifetime. Hence, it is advisable to recalibrate the system after 
extended use. The second calibration step is to account for 
different lighting conditions. In practice, ambient lighting 
can vary, so HyperCam needs to adapt dynamically. Before 
each session, we capture an ambient lighting image, i.e., an 
image without any LEDs switched on. The system then 
subtracts this image from all the subsequent images for that 
session.  

 
Figure 5. HyperCam flowchart 

SOFTWARE DESIGN 
Time multiplexed hyperspectral imaging can be viewed as 
generating a 3-dimensional data structure of a scene. The 
first two dimensions contain the spatial data and the third 
dimension contains the spectral information. Therefore, the 
minimum number of luminance images an imaging system 
generates per frame is the same as the number of 
wavelengths covered by a camera.  

In a number of hyperspectral imaging efforts, the goal of the 
research is targeted towards a specific application, in which 
the researchers first identify the wavelengths suited for that 
particular application a priori. After that, a common way of 
reducing the number of images is using dimensionality 
reduction techniques such as Principal Component Analysis 
(PCA) and clustering. Many times the results from this 
process are then fed into a targeted machine learning 
classifier for that domain [2,8].  

In contrast, HyperCam is designed as a general-purpose 
system that can be used for a number of applications. 
HyperCam captures 17 wavelengths, which means in 
absence of any further processing the user would need to sift 
through at least 17 images for each capture. These 
wavelengths are guided by the selection of LEDs on the 
device and the user can switch in and out different 
wavelengths (by changing the LEDs) as they gain more 
insight into their problem. In order to maximize the amount 
of information in a single image, HyperCam first produces a 
number of images that are combination of different 
wavelength responses. It then ranks them according to a 
heuristic based on the image histogram and gradient 

magnitude. The final selected images are outputted in the 
form of images, videos (if applicable), and presets. These 
presets can later be applied to other scenes and can save the 
user from computing the desirable combination of 
wavelengths again. Figure 5 shows the step-by-step process 
used for HyperCam. 

Image Generation 
Once one image per wavelength is captured, HyperCam 
generates different combinations of the original images. In 
order to capture the variability in a scene, it first employs the 
traditional approach of applying PCA.  

Consider 𝑋 = [𝑥!, 𝑥!,… , 𝑥!"] where 𝑥! is the column vector 
of image generated by the 𝑛 + 1 !! wavelength. The 
column vectors are of length 𝑤  ×  ℎ, where 𝑤 is the width of 
the input images, and ℎ is the height. The vectors are 
demeaned to ensure that the mean of each vector is zero. 
PCA uses Singular Value Decomposition (SVD) to break 𝑋 
down into two components:  

𝑇   =   𝑋 ∙𝑊  

Defining 𝑇, a matrix the same size as 𝑋 with each column 
representing a principal component, and W, a matrix of size 
17×17 that represents the coefficients or loadings necessary 
to construct T from X. T therefore represents a set of 17 
images constructed through linear combinations of the 17 
source images, designed so as to capture the maximum 
variance in the signal. 

It is important to note that 𝑇 does not have the same 
dynamic range as our input images, 𝑋. Thus, we scale 𝑇 to 
ensure its range is the same as 𝑋. Each column vector of 𝑇 is 
reshaped to size 𝑤  ×  ℎ. Each element of 𝑇 represents our 
new image and we call them HyperFrames. These 
HyperFrames try to capture the variability of the original 
multispectral images. Ideally we can keep only the top x (x < 
17) images, but we still store all images and run them 
through our image-ranking algorithm (discussed later). 

An important thing to note here is that these transformed 
images are weighted linear combinations of all the captured 
wavelengths. If the user wants to reproduce similar 
HyperFrames later, they need to capture images for all 
wavelengths with nonzero weights, which is typically all 17 
wavelengths in practice. While this is not difficult to 
achieve, in a number of cases the most interesting variability 
in a scene is encoded in a subset of the 17 wavelengths. 
Keeping this in mind, we try to reduce the number of 
wavelengths required by also generating images using a 
subset of wavelengths.  

We achieve this through two different techniques. First, we 
perform PCA on only a subset of the 17 wavelengths. We 
select the central wavelengths for Red, Green, and Blue (i.e., 
650 nm, 525 nm, and 470 nm, respectively), and all NIR 
bands (i.e., 820 nm, 890 nm, 950 nm, and 990 nm). We 
focus on the NIR wavelengths because these wavelengths 
are invisible to the human eye and their reflectivity for many 



objects is not entirely intuitive. In fact, the field of near 
infrared spectroscopy uses NIR for applications in 
pharmaceuticals, medical diagnostics, etc. [4]. Therefore a 
PCA with the 7 wavelengths subset (3 RGB + 4 NIR) yields 
7 more images that are added to our set of HyperFrames. 
These HyperFrames therefore consist of a linear 
combination of only the chosen 7 wavelengths, and future 
images can be constructed using only those 7 wavelengths, 
reducing the number of wavelengths required for a particular 
application. 

Apart from PCA, we also employ tone mapping to generate 
more HyperFrames. We use tone mapping to efficiently 
visualize a scene’s response to different wavelengths. We 
ideally want to use wavelengths that contain the most 
information in the scene. Therefore, we use PCA to rank the 
17 wavelengths and pick the top three. We employ the 
approach proposed by Yoon el at. [37]. Using these three 
wavelengths, we generate four high dynamic range (HDR) 
images, for all four possible combinations (𝐶!! + 𝐶!! = 4). 
These HDR images are then tone mapped to maximize the 
local contrast. We used algorithms proposed by Reinhard et 
al. [28] and the standard constructs of the Image Processing 
Toolbox of MATLAB to generate these images. Figure 11, 
in the Applications section, shows tone-mapped images of 
avocados and kiwis. The system selected 820 nm, 890 nm 
and 990 nm as the principal wavelengths for this scene. The 
images for these wavelengths were then tone mapped to 
generate the final HyperFrame. We use tone mapping as a 
tool to combine multiple images into one. These images 
prove to be an efficient way to visualize information because 
they aim to maximize the local contrast. 

Table 1. Number of images generated by HyperCam 

By the end of HyperCam’s image generation process, we 
have 45 HyperFrames. Table 1 provides the breakdown. We 
do not claim that this is an exhaustive set of combination of 
wavelengths and it is not necessary that these images would 
work for all applications. These combinations were informed 
by our experiments with a wide range of scenes and they are 
already used extensively in various multispectral imaging 
systems. We envision future works extending these 
techniques further.  

Once all the HyperFrames are generated, they need to be 
shown to the user. However, it would be inefficient for the 
user to go through all these images. Consequently, we 

provide an automatic method of ranking these HyperFrames 
to help the user in quickly finding the images of interest. 

HyperFrame Ranking 
Our goal is to show images that are “interesting” to the user, 
i.e., images that show the user something new. So we define 
“interesting” as something that is different from the 
perception of the human eye. We use the RGB images as an 
estimate of human perception. We rank the HyperFrames 
according to their difference from the luminance of the RGB 
image. For this we generate an RGB image by combining 
images received at 470 nm, 525 nm, and 650 nm. We then 
compute the luminance image from the RGB image. Since 
all our hyperspectral images are luminance images, 
generating a luminance image of the human-perception-
estimate enables a straightforward comparison. 

HyperCam then computes the intensity histogram difference 
between the RGB images and all the HyperFrames. The 
image with the highest difference is selected as the first 
HyperCam image to show the user. In order to select the 
next HyperCam image, the system also computes the 
difference between remaining HyperFrames and the first 
selected image. This way we ensure that two images that are 
very similar to each other, but different from the RGB 
image, are not selected and it is more likely that something 
visually new is shown in each new image.  

Temporal Variability 
The techniques mentioned until now only look at a single set 
of multispectral images. However, a number of physical 
phenomena have more temporal variability than spatial. For 
example, the human pulse, development and blooming of 
flowers, etc. In a number of hyperspectral applications, such 
as skin quality tracking [15], the changes might occur 
slowly, and the user might need to collect data over extended 
periods before the change becomes apparent.  

In order to visualize and understand temporal changes, we 
monitor the change in each wavelength. As a first step, we 
employ a straightforward approach of looking at the 
variance in the histogram of each wavelength over time. So 
if a part of the scene changes color or brightness, it would be 
captured in the histogram variance. We also monitor the 
variance in the gradient of the scene using Sobel filter [32]. 
If new features show up in a scene over time, it would lead 
to new edges or blobs that could be quantified by the 
gradient generated by the Sobel filter. For example, if a leaf 
becomes dry due to lack of water, the veins might become 
more pronounced and thereby changing the gradient 
magnitude. Once the histograms and gradients are 
calculated, we rank all the wavelengths according to the two 
variances separately. We finally take the mean rank for each 
wavelength and select the top three wavelengths. In case of a 
tie, we select the wavelength that is ranked higher according 
to histogram heuristic.  

Once we have the three wavelengths that change the most 
over time, we tone-map them, the same way as earlier. In 

Operation Number of HyperFrames 

Original multispectral images 17 

PCA over original images 17 

PCA over RGB-NIR 7 

Tone mapped images 4 

Total 45 



this case, the final output of the system is not just the image, 
but a video that visualizes the change in these top two or 
three wavelengths. We discuss an application of tracking 
temporal variability in the next section.  

Presets 
Once the user finds an interesting HyperFrame or video, and 
thereby an interesting combination of wavelengths, 
HyperCam provides the option of exporting and saving the 
features (or coefficients) of principal components for that 
particular use case. The new hyperspectral images can 
simply be transformed by loading the saved principal 
component or tone mapping settings. We show how using 
these exported presets can be useful in example 
demonstration applications in the next section.  

APPLICATIONS 
We developed two different applications to illustrate the 
performance of HyperCam. The first application aims to 
extend the capabilities of multi-user interaction systems 
(Figure 6). It identifies individual users of the system and 
can be used to provide user-specific features. The second 
application is for food monitoring. In particular, providing a 
way to inspect fruits and show fruit ripeness and deep 
invisible dents or spots. Imagine being able to build a sensor 
for a refrigerator or pantry that would let you know when 
food is going bad or is ready to eat -- a canonical scenario in 
ubiquitous computing. 

 
Figure 6. Concept sketch showing use of HyperCam to 
identify users on a multi-touch tabletop display 

Identifying Various Users 
When a user interacts with a touch surface, the surface only 
detects the touch points; the surface usually has no idea 
about the user’s identity. Identifying users can be very useful 
to extend the capabilities of collaborative applications. 
Murugappan et al. [27] demonstrated a system that tracked 
the users interacting with a screen using a top-mounted 
depth camera through information about their arms’ 
position. Such a system works well as long as all the users 
are inside the field of view of the camera. Fiberio [12] 
mitigates this limitation by using a custom fiber optic plate 
as the touch surface and extracts fingerprints for all the 
users. We have developed a very lightweight solution that 

uses HyperCam to find relevant features from the back of a 
user’s hand to identify them in multi-user scenarios.  

NIR wavelengths are best suited to capture the venous 
structure because longer wavelengths are able to penetrate 
deeper into the skin. NIR light is minimally absorbed by 
melanin but highly absorbed by de-oxygenated blood in the 
veins; therefore, this enables differentiation between blood 
vessels and surrounding tissues. This venous structure is 
believed to be unique for each user and researchers have 
made progress in using this venous structure as a biometric 
signal [6,35]. HyperCam provides an additional feature that 
improves the signal-to-noise ratio and potentially provides a 
more robust solution. Lights with shorter wavelengths 
usually reflect off the incident surface. We use this property 
to detect surface reflections due to the texture of a user’s 
skin (Figure 7, Left). The texture produced by these images 
is extremely detailed and when combined with the venous 
information (Figure 7, Right), it can form a robust 
identifying feature for different users. 

 
Figure 7. Hand images captured by HyperCam that 
accentuate either hand texture (Left) or venous structure 
(Right) 

Although it is possible that HyperCam can be used to 
develop a complete biometric solution, we have taken the 
first steps in demonstrating its utility for interactive systems. 
HyperCam can be mounted above a multi-user tabletop 
touch display such that it has a clear view of the table and 
the hands interacting with it (Figure 6). The system can 
capture hyperspectral images to register each user and 
determine their identity from a list of known users. Once a 
user has been identified, HyperCam does not need to capture 
more hyperspectral images and object tracking can be used 
to continuously maintain user identity. After this, whenever 
a new user comes in or an old user returns, HyperCam can 
reassess their identity.  

To evaluate our approach and test the feasibility of such a 
system, we recruited 25 participants (20 males, 5 females) of 
Caucasian, Hispanic, Asian, and South Asian descent. For 
each participant, HyperCam captures hand images at all 17 
wavelengths. We capture images in two hand poses: 



outstretched and pointing (Figure 7). We repeated this five 
times to produce 10 image sets per user and passed them 
through HyperCam’s image generation and ranking 
algorithm. After examining the top 3 images for all users, we 
chose two presets that accentuated texture and vein patterns; 
together, we believe these provide a sufficiently unique 
signature between users. These two presets are applied to the 
whole dataset collected in the experiment. 

Before extracting texture and vein features, we segment the 
dorsum of the hand from the rest of the image through 
adaptive thresholding. We focus on dorsum because it is 
most likely to be visible from an overhead camera 
throughout a variety of touch gestures. After analyzing the 
hand structure, we apply an automatically computed mask to 
the rest of the images in the set. 

We quantify texture using Sobel filters [32] applied in the 
horizontal and vertical directions. This creates a gradient that 
encapsulates how the pixel intensity changes locally within 
an image. We extract the gradients’ magnitude and direction 
by converting the gradients to their polar representation. To 
extract a feature vector from this information, we 
automatically divide the hand mask into 16 regions based on 
the position of the user’s knuckles. We then compute a 10-
bin histogram within each region for both the gradient 
magnitude and angle to create a feature vector of 320 
elements. For the HyperFrame that captures veins, we 
extract vein patterns as a binary image by applying an 
adaptive threshold and a series of morphological 
transformation to remove noise. We employ template 
matching and autocorrelation to match these binary images. 

To evaluate our system, we train on one instance per user 
and test on the remaining instances. Thus, we train on one 
hand pose, but test on both the poses (“both poses”). As a 
more stringent test, we also trained on one pose and tested 
on the other pose (“different poses”).  

Figure 8. Classifying images taken in a different hand pose 
reduces accuracy to 83%. Combining both texture and vein 
features results in a small improvements in accuracy 

When we attempt to classify among all 25 users at once, we 
achieve 100% accuracy in the “both poses” scenario, but 
78.8% in the “different poses” scenario. However, this is not 
realistic for the multi-user interaction scenario, where only a 
handful of users operate a screen at a time. We simulate such 
a scenario through 20 random permutations of five users at a 
time. Figure 8 shows the accuracy of our classifier 

considering the texture HyperFrame, the vein HyperFrame, 
and both HyperFrames together. We compare the accuracies 
in this manner to determine how the individual HyperFrames 
contribute to the overall accuracy. Although texture features 
were more useful in identifying users than vein features, the 
addition of vein-based features may improve accuracy on a 
larger database of users. In general, all of the models 
performed comparably for the “both poses” condition, with 
accuracy around 99.0%. However, we observe that our 
classifier performs worse when samples are only compared 
across different poses. While the dorsum remains relatively 
flat in both the outstretched and pointing poses, there is still 
a difference in the hand’s shape that leads to different 
reflections and shadows on the hand. Given our high 
accuracy numbers, however, we show that this dependency 
is not too restrictive.  

 
Figure 9. Accuracy is maintained even as the image is 
downsampled to a 1/32 reduction in width and height 

One limitation of this evaluation is the constrained nature of 
the data collection method. Images were captured from 
35 cm away in a dark room in order to control the image 
exposure. In reality, the camera would need to be much 
farther from a multi-user touch surface in order to capture 
the entire surface and multiple users. This presents two 
challenges. First, HyperCam's LEDs would not be sufficient 
to illuminate the scene. However, brighter LEDs can be 
substituted that are sufficient for the environment in which 
the camera is being used. Second, images taken from farther 
distance would have a much lower resolution. To address the 
resolution issue, we also evaluated the performance on 
downsampled HyperFrames (Figure 9). We found that we 
can achieve acceptable performance even when we scale 
images by a factor of 16. This corresponds to a distance of 
over five meters, which would be an appropriate mounting 
distance for the camera. 

In this evaluation, we consider only a single training 
instance per user. In reality, the system could capture several 
training images or even learn from the user over time, and 
improving overall classification accuracy. 

We have demonstrated the feasibility of using HyperCam to 
recognize users in a multi-user interactive environment. 
HyperCam offers benefits over traditional imaging systems 
because it captures information about both hand texture and 



vein patterns. Moreover, presets can be selected from the 
automatically generated HyperFrames that highlight the 
features of interest, making the feature extraction step much 
easier. Through our evaluation, we show that this approach 
is successful at reliably distinguishing between five users at 
a time, a reasonable bound on number of users of a multi-
touch surface at any point in time. 

Fruit Quality Detection 
Ripeness is an important attribute that a user wants to be 
sure of when they buy or eat fruits. Researchers have used 
hyperspectral imaging and laser spectroscopy to determine a 
fruit’s ripeness for industrial applications [3,23,24]. These 
systems are usually tuned for specific fruits. This is essential 
for these systems because they aim to predict an absolute 
level of ripeness. We believe that from a home-user’s 
perspective, relative ripeness is more useful. For instance, a 
user would be more interested to determine which tomato in 
their collection is the ripest. This could be done using 
HyperCam to create a “smart fruit tray” that senses the ripest 
fruits and makes suggestions accordingly.  

Researchers have used a number of wavelengths ranging 
from 680 nm to 1100 nm for determining fruit ripeness. 
When these wavelengths strike the fruit, the majority of the 
light penetrates into the fruit tissue. Inside the fruit, the light 
is scattered and absorbed by the chemical constituents and 
the material’s physical structures. As a fruit ripens, the sugar 
content and density usually increases, which results in 
increased absorption and scattering of photons. The degree 

to which these phenomena occur would depend on the type 
of fruit, as well as the incident wavelengths.  

In evaluating HyperCam, we sought to answer two question: 
(1) can the HyperCam’s hardware sense the difference 
between a ripe and unripe fruit; and (2) can our software 
approach detect whether a fruit is ripe without any domain 
knowledge.   

We captured hyperspectral images of 10 different fruits: 
apples, oranges, mangoes, plums, pears, tomatoes, 
strawberries, blueberries, kiwis, and avocados. We 
purchased two batches of fruits; each batch contained 10 
pieces of each fruit. In order to make sure that one of the 
batches was riper than the other, we bought them one week 
apart. Additionally, we accelerated the ripening process by 
keeping all the fruits in the first batch with rice. The 
presence of ethylene in rice has been shown to accelerate the 
ripening of fruits [29].  

We grouped fruits into pairs of the same type – one ripe and 
one relatively unripe. We used HyperCam to collect 
hyperspectral images for each pair. All photos were taken at 
a distance of 45 cm in a room with normal brightness. Once 
all the data was collected, a randomly selected subset of 10 
images was passed through HyperCam’s image generation 
and ranking algorithm. We inspected the top five images and 
recorded the wavelengths with maximum PCA weights. The 
top five images were inspected and the tone-mapped image 
of the top three wavelengths (discussed in Software Design) 
was consistently ranked higher. The three wavelengths 
selected by HyperCam were 820 nm, 950 nm, and 990 nm 
(all NIR). We saved this preset and applied it to all the 
collected images (Figure 10).   

 
Figure 11. HyperCam can be used to detect ripeness, spots, 
and dents on fruits and vegetables. (Top-Left) RGB image of 
an avocado, (Bottom-Left) HyperCam image with internal 
spots, (Right) Original RGB image overlaid with detected 
spots. 

We used a simple blob detection scheme to extract the two 
fruits from each scene. Because ripeness tends to lower 
reflectance, we simply compared the mean luminance of 
each pair. Figure 10 shows example images for avocados, 
kiwis, and plums. In each image, the fruit on the left is riper. 
We have three avocados in the image only for illustration 
purposes – the experiments were only done in pairs. Our 
system correctly predicted the relative ripeness for 47 of the 
50 pairs (94% accuracy). In contrast, when using the RGB 
images from HyperCam, the accuracy was only 62%. 

This system can also be used to detect invisible spots and 
dents on fruits and vegetables. If there is a dent on a fruit, it 
will most likely make the material abruptly soft at that 
location. Therefore, there will be more scattering of the 

 
Figure 10. (Top Row) Automatically generated tone-mapped 
image. The fruits are arranged in decreasing order of ripeness, 
i.e., the left ones are riper. (Left) Avocado. (Right) Kiwi. 
Avocados display marked difference in luminance with change 
in ripeness. The call-outs for kiwi show patches from the fruits 
and put them side-by-side for better visual understanding. The 
patch from the left fruit is less bright than the right one. Less 
bright means riper fruit. (Bottom Row) RGB image, Note: The 
images are cropped to provide a closer perspective. 



photons and less reflectance. Figure 11 shows one such 
example. The avocado in the image doesn’t show any sign of 
dents or spots (Figure 11) on the skin but when analyzed 
using HyperCam, the internal spots become clear. The figure 
shows a yellow overlay on the detected dent.  

DISCUSSION AND CHALLENGES 
The goal of HyperCam is to make multispectral imaging 
easier and more efficient for various sensing applications.  
Although multispectral imaging provides advantages over 
traditional RGB imaging, there are some challenges.  

Wavelength Selection 
HyperCam uses 17 wavelengths that are spread between 
450 nm and 990 nm. We selected a combination of 
narrowband and wideband wavelengths in order to provide 
good coverage. However, the wavelengths useful for an 
application will always be domain-specific as different 
materials will have different spectra. It is impossible to have 
a set of generic wavelengths for all applications. Although 
line-scan cameras solve this problem by using a very dense 
wavelength distribution, as discussed earlier, they have 
various limitations, such as low spatial resolution.  

Time-multiplexed illumination (used by HyperCam) and 
passive filters provide a very modular design making it easy 
to experiment with different wavelengths: the user simply 
needs to switch LEDs or filters. Moreover, HyperCam’s 
ability to speed up the process of finding the salient aspects 
of a scene can potentially inform the user if the current set of 
wavelengths are useful. We envision that in cases where the 
user is looking to develop a system for a specific problem, 
they can use HyperCam to understand the spectral properties 
of their scene, and then perhaps get a custom multispectral 
camera with dedicated filters.  

Ambient Light 
It is important for a number of applications that the sensing 
solution needs to work in different environments. For 
example, it is not desirable for a system to only measure a 
user’s pulse indoors. Though time-multiplexed illumination 
enables faster, cheaper, and smaller imaging solutions, it 
suffers from sensitivity to ambient light. HyperCam cannot 
be used in bright or sunny environments. The LEDs can be 
made brighter for some situations, yet still won’t be bright 
enough for sunny environments. The passive filters or 
custom CFA-based cameras will be more appropriate for 
such applications. It must be noted though, that HyperCam’s 
software-based image generation technique does not depend 
on the hardware used and can be applied to any multispectral 
imaging system.  

Size 
Although HyperCam is almost as big as a multispectral 
camera with a filter wheel (similar to the one used in [2]), 
the use of time-multiplexed illumination can lead to a 
substantially smaller device. The device simply needs 
multiple illumination sources, apart from the CMOS sensor. 
Every smartphone comes with at least one light source and it 
is not hard to envision one with multiple such sources. In 

fact, apart from iPhone’s multiple flash LEDs, Eigen 
Imaging Inc.1 sells a smartphone accessory that adds such 
LEDs for NIR imaging and fluorescence detection. 

Generalizability of Algorithms 
HyperCam’s algorithms aim to output images that maximize 
the visual variability in a scene and focus on features that 
may not be visible to the human eye. We use PCA, tone 
mapping, and histogram and gradient matching for this 
purpose. Although these techniques are general approaches 
for dimension reduction and image matching and have been 
used in various multispectral imaging applications [2,8], we 
do not claim that these techniques are completely 
generalizable and will work for all applications. 

Presets 
The goal of our two application case-studies is to 
demonstrate that HyperCam and hyperspectral imaging can 
be an effective sensing tool for ubiquitous computing 
applications. The devices and techniques we present can be 
used both as exploratory tools for researchers in their own 
applications and as tools for end-users to create interesting 
images that capture a different world that cannot normally be 
seen with their eyes.  

A community of end-users could help grow the HyperCam’s 
ecosystem by contributing their settings or presets as a 
“virtual lens”. As an example, imagine a person takes a 
HyperCam photo of a flower and then selects a resulting 
HyperCam image that is appealing. If that virtual lens was 
shared, a different user could apply it in real-time as an 
augmented-reality view, enabling them to explore a scene of 
flowers interactively with their HyperCam.  

CONCLUSION 
We have presented HyperCam, an approach that can make 
hyperspectral imaging easier to implement and explore as a 
sensing modality. We demonstrate a low-cost hardware 
implementation of a hyperspectral camera using time-
multiplexed illumination and a software system that provides 
a user with a set of images that presents interesting 
information from multiple bands of the visible and NIR 
spectra. We demonstrate the effectiveness of HyperCam 
through two different applications: food quality monitoring 
and multi-user interaction. We believe this work will open 
doors for a rich set of future work in multiple domains, 
including health sensing and interaction systems.  
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